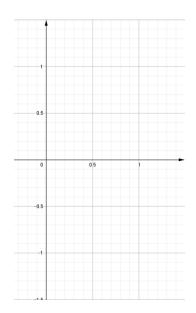
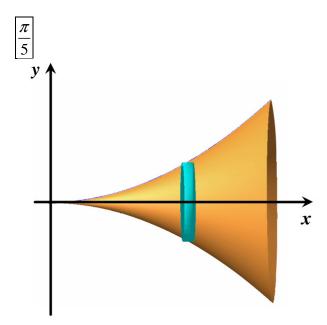
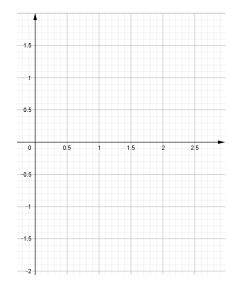
Find the volume of the solid obtained by the rotating the region bounded by the given curves about the specified line. Sketch the region, the solid, and a typical disk or washer.

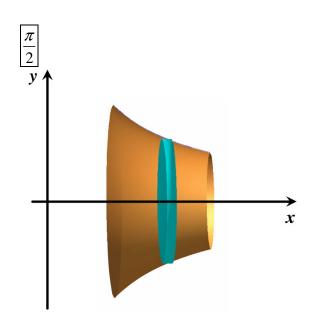
1)
$$y = x^2$$
, $x = 1$, $y = 0$ | about the x-axis





2)
$$y = \frac{1}{x}$$
, $x = 1$, $x = 2$, $y = 0$ | about the x-axis

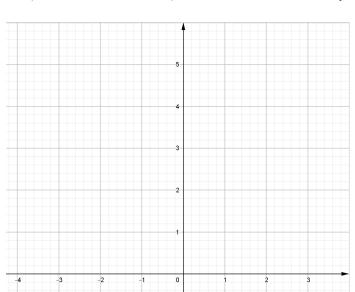


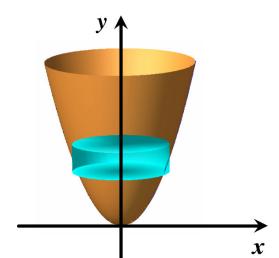


MathFortress.com

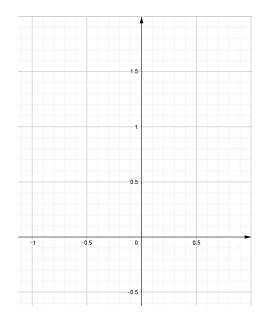
 8π

3) $y = x^2$, $0 \le x \le 2$, y = 4, x = 0 | about the y-axis

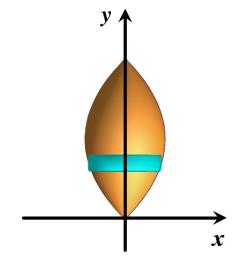




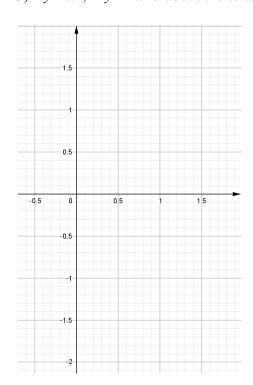
4) $x = y - y^2$, x = 0 | about the y-axis



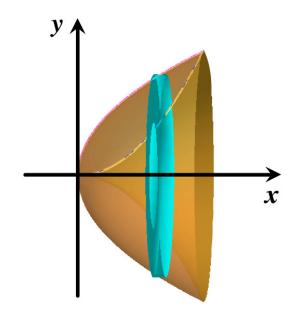
 $\frac{\pi}{30}$



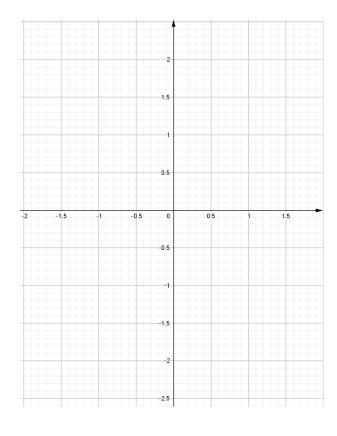
5) $y = x^2$, $y^2 = x$ | about the x-axis



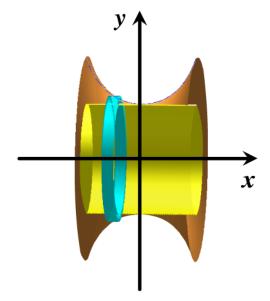
 $\frac{3\pi}{10}$



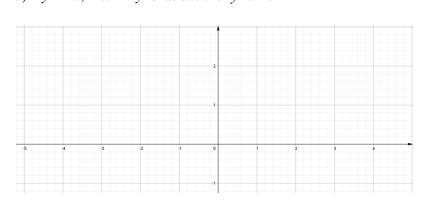
6) $y = \sec x$, y = 1, x = -1, x = 1 | about the x-axis



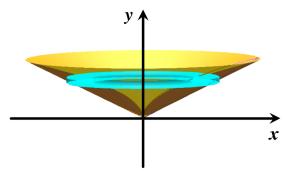
 $2\pi [\tan(1) - 1]$



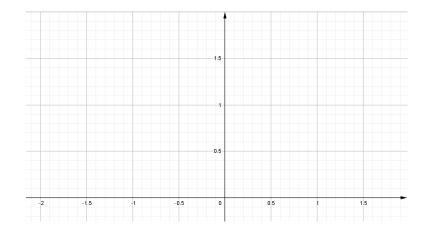
7) $y^2 = x$, x = 2y | about the y-axis



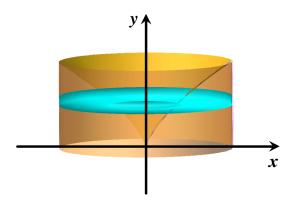
 $\frac{64\pi}{15}$



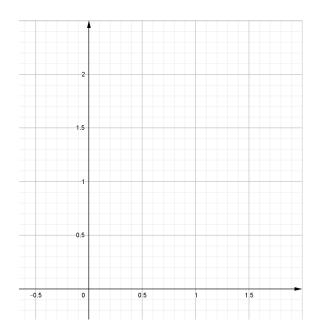
8) $y = x^{\frac{2}{3}}$, x = 1, y = 0 | about the y-axis



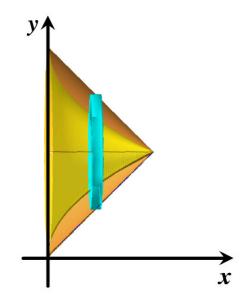
 $\frac{3}{4}\pi$



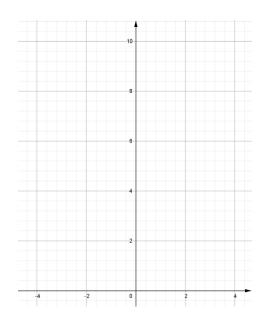
9)
$$y = x$$
, $y = \sqrt{x}$ | about $y = 1$



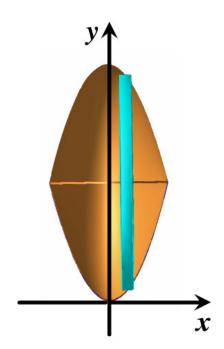
$$\frac{\pi}{6}$$



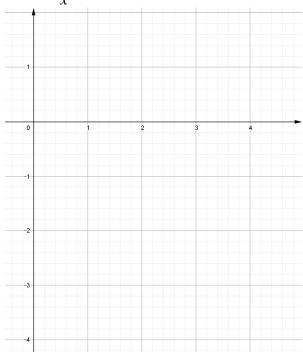
10)
$$y = x^2$$
, $y = 4$ | about $y = 4$



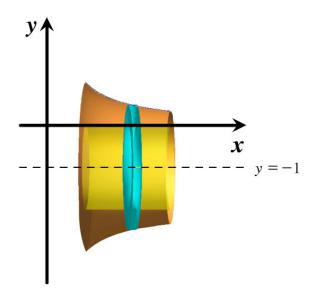
$$\frac{512\pi}{15}$$



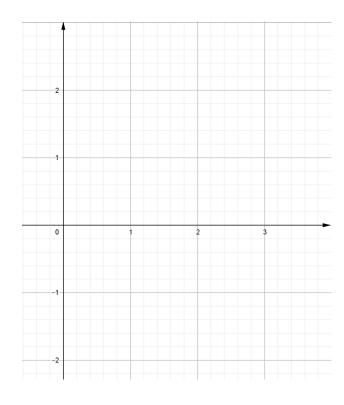
11)
$$y = \frac{1}{x}$$
, $y = 0$, $x = 1$, $x = 3$ | about $y = -1$



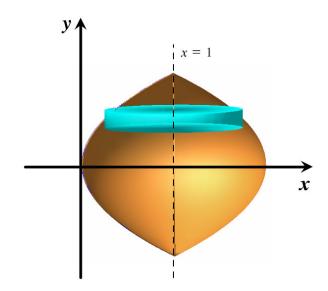
$$2\pi \left[\ln(3) + \frac{1}{3}\right]$$



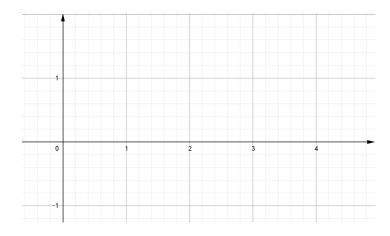
12)
$$x = y^2$$
, $x = 1$ | about $x = 1$



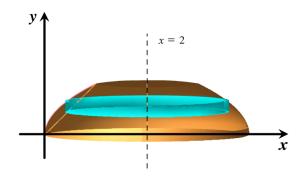
$$\frac{16}{15}\pi$$



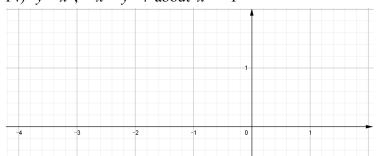
13)
$$y = x$$
, $y = \sqrt{x}$ | about $x = 2$



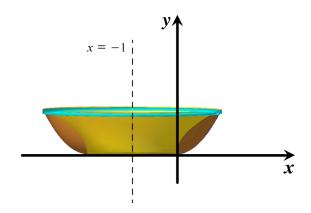
$$\frac{8}{15}\pi$$



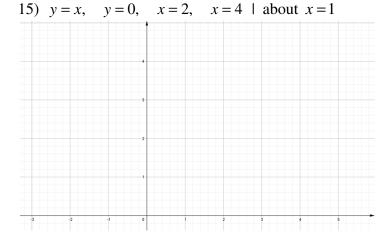
14)
$$y = x^2$$
, $x = y^2 \mid \text{about } x = -1$



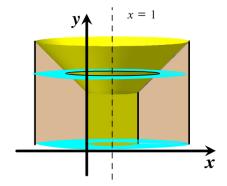
$$\frac{29}{30}\pi$$



Volumes



 $\frac{76}{3}\pi$



Set up, but do not evaluate, and integral for the volume of the solid obtained by rotating the region bounded by the given curves about the specified line.

16)
$$y = \tan^3 x$$
, $y = 1$, $x = 0$ | about $y = 1$

$$V = \pi \int_0^{\frac{\pi}{4}} \left(1 - \tan^3 x \right)^2 dx$$

17)
$$y = (x-2)^4$$
, $8x - y = 16$ | about $x = 10$

$$V = \pi \int_0^{16} \left\{ \left[10 - \left(\frac{1}{8} y + 2 \right) \right]^2 - \left[10 - \left(2 + \sqrt[4]{y} \right) \right]^2 \right\} dy$$

18)
$$y = 0$$
, $y = \sin x$, $0 \le x \le \pi$ | about $y = -2$

$$V = \int_0^{\pi} \left[\left(\sin x + 2 \right)^2 - 2^2 \right] dx$$

19)
$$x^2 - y^2 = 1$$
, $x = 3$ | about $x = -2$

$$V = \pi \int_{-2\sqrt{2}}^{2\sqrt{2}} \left[5^2 - \left(\sqrt{1 + y^2} + 2 \right)^2 \right] dy$$

20) Use a graph to find approximate x-coordinates of the points of intersection of the given curves. Then find (approximately) the volume of the solid obtained by rotating about the x-axis the region bounded by these curves.

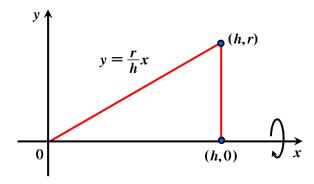
$$y = 3\sin(x^2), \quad y = e^{\frac{x}{2}} + e^{-2x}$$

21) A CAT scan produces equally spaced cross-sectional views of a human organ that provide information about the organ otherwise obtained only by surgery. Suppose that a CAT scan of a human liver shows cross-sections spaced 1.5 cm apart. The liver is 15 cm long and the cross-sectional areas, in square centimeters, are 0, 18, 58, 79, 94, 106, 117, 128, 63, 39, and 0. Use the Midpoint Rule to estimate the volume of the liver.

$$V \approx 1110 \text{ cm}^3$$

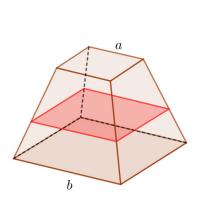
Find the volume of the described solid S.

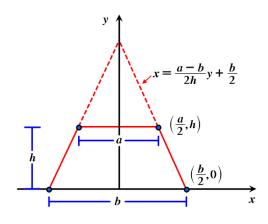
22) A right circular cone with height h and base radius r. Use the following diagram to find the volume by using calculus.



$$V = \frac{1}{3}\pi r^2 h$$

23) A frustum of a pyramid with square base of side b, square top of side a, and height b. What happens if a = b? What happens if a = 0? Use the following diagram to find the volume by using calculus.



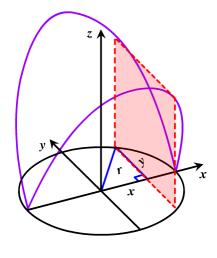


$$V = \frac{1}{3}(a^2 + ab + b^2)h$$

$$a = b \rightarrow V = b^2h$$

$$a = 0 \rightarrow V = \frac{1}{3}b^2h$$

24) The base S is a circular disk with radius r. Parallel cross-sections perpendicular to the base are squares. Use the following diagram to find the volume by using calculus.



$$V = \frac{16}{3}r^3$$

25) The base of S is an elliptical region with boundary curve $9x^2 + 4y^2 = 36$. Cross-sections perpendicular to the x-axis are isosceles right triangles with hypotenuse in the base.

$$V = 24$$

26) The base of S is the parabolic region $\{(x, y) \mid x^2 \le y \le 1\}$. Cross-sections perpendicular to the y-axis are equilateral triangles.

$$V = \frac{\sqrt{3}}{2}$$

27) Find the volume common to two spheres, each with radius r, if the center of each sphere lies on the surface of the other sphere.

$$\frac{5}{24}\pi r^3$$